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Abstract The ladder operators for the Goldman and Krivchenkov anharmonic poten-
tial have been derived within the algebraic approach. The method is extended to include
the rotating oscillator. The coherent states for the Goldman and Krivchenkov oscilla-
tor, which are the eigenstates of the annihilation operator and minimize the general-
ized position-momentum uncertainty relation, are constructed within the framework of
supersymmetric quantum mechanics. The constructed ladder operators can be a useful
tool in quantum chemistry computations of non-trivial matrix elements. In particular,
they can be employed in molecular vibrational-rotational spectroscopy of diatomic
molecules to compute transition energies and dipole matrix elements.

Keywords Ladder operators - Coherent states - Algebraic methods -
Goldman and Krivchenkov potential - Isospectral potential - Darboux transformation -
Anharmonic oscillator - Supersymmetry approach

1 Introduction

Algebraic construction of coherent states and ladder operators for anharmonic oscilla-
tors, described by exactly solvable potentials, is one of the useful tasks to realize in the
domain of quantum mechanics. The term coherent reflects the fact that such states are
localized on the corresponding classical trajectory and don’t change their functional
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form during propagation. Coherent states can be defined in three ways: (1) by means of
a displacement oscillator acting on the ground state of an oscillator, (2) in terms of the
eigenstates of an annihilation operator and (3) by the position and momentum of the
minimum uncertainty states. It should be pointed out that the definition (1) depends on
the analytical form of a displacement operator, which is specific to a harmonic oscilla-
tor [1], hence in this case approximate coherent states can be constructed employing,
for example, the Nieto and Simmons [2] or Kais and Levine [3] procedures.

The ladder operators can be constructed using the algebraic or supersymmetric
(SUSY) approaches [4,5] which have been successfully applied to the Morse, Poschl—
Teller, radial harmonic and other oscillators [6—15]. The fundamental study in this
direction was developed by Schrodinger [16], who introduced the factorization method
into quantum mechanics. This concept was generalized by Infeld and Hull [17]. In their
paper a detailed analysis of the factorizable oscillators was presented. Recently, Dong
et al. derived the raising and lowering operators for the Morse [18], Poschl-Teller [19]
and pseudoharmonic oscillators [20] employing some properties of the associated
Laguerre and Legandre polynomials. These operators satisfy the commutation relation
for the SU(2) Lie group [21]. The Morse oscillator and others have been studied both
in terms of SO(2,1) and SU(2) Lie groups. Also Avram and Drigédnescu [22] have
constructed the ladder operators for the Morse potential. They used properties of the
confluent hypergeometric function in the recurrent analytic form. Recently, Dong et
al. [23] proposed a new anharmonic oscillator in the form:

Vi 6) = tporrr o0 I peoso (1.1)
i 2ur? " 2ur2sin?g’ '
where 1, w, o and B8 denote the reduced mass of a particle, the angular frequency
and two dimensionless parameters, respectively. These authors presented the exact
solutions of the Schrodinger equation with this oscillator. Moreover, in this study the
ladder operators were constructed directly from the normalized radial function.

Goldman and Krivchenkov introduced a simple anharmonic potential, which can
be written in the following form [24]:

A
V(r)=Br’+ =, (1.2)
r

in which A, B are constants and r denotes the internuclear separation. The Goldman
and Krivchenkov potential (G-K potential) is one of the few for which the Schrodinger
equation has an exact analytical solution. This potential is a generalization of the ordi-
nary harmonic oscillator in three dimensions, in which parameter A is a continuous
parameter in the range [0, oo] instead of the values determined by the rotational quan-
tum number. The G-K oscillator is introduced for a description of the bond-stretching
vibrations of diatomic molecules. Thus, this potential is a realistic zero-order model
useful for description of anharmonic vibrations in diatomic molecules.

The coherent states for the Morse potential have been constructed using different
approaches. Perelomov [25] constructed the coherent states using the Lie group sym-
metry. Employing this approach, Dong [26] obtained the coherent states for the Morse
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potential basing on the SU(2) Lie algebra. Nieto and Simmons [27] proposed a new
method for the construction of coherent states of arbitrary oscillators based on the
classical equation of motion and applied it to the Morse oscillator. Benedict and Mol-
nar [4] presented an algebraic method employing the SUSY ladder operators to the
construction of the coherent states for the one-dimensional Morse oscillator. More-
over, they determined the unitary displacement operator, which generates coherent
states from the ground states.

The study of the Barut—Girardello coherent states [28] has attracted much attention.
These states can be assumed as eigenstates of the lowering operator of an arbitrary
quantum system. Brief [29] considered the Barut—Girardello coherent states using the
properties of the Lie algebra SU(1,1). However, it was Fakhri and Chenaghlou [30]
who constructed these coherent states for the Morse oscillator as a linear combination
of the quantum states corresponding to this potential. A generalization of the Barut—
Girardello approach was investigated by Gazeau and Klauder [31,32]. Adopting this
approach Popov [33] obtained Barut-Girardello coherent states for the Morse potential.
Chenaghou and Fakhri [10] derived these coherent states for the Eckart and Rosen-
Morse potentials.

The purpose of the present work is to construct the ladder operators and minimum-
uncertainty coherent states for the G—K oscillator and to generalize the approach to
include the rotating G—K oscillator. The work is organized as follows. In the second
section, we derive the ladder operators from the analytical wave function of the G—
K oscillator. In the third part, this method is extended to include the rotating G-K
oscillator. In the fourth chapter the coherent states and an isospectral potential of the
G-K potential have been obtained using the SUSY approach. In the next section, we
demonstrate that these coherent states minimize the generalized position-momentum
uncertainty relation.

The derived ladder operators for the G—K anharmonic and the corresponding G—
K rotating oscillator can be utilized in rotational-vibrational molecular spectroscopy
of small diatomic molecules to compute matrix elements and rotational-vibrational
transition probabilities in the electronic states of these molecules.

2 Ladder operators for the G-K oscillator with zero total angular momentum

In order to determine the ladder operators for the G-K potential we employ the alge-
braic method. The starting point for the realization of this aim is the vibrational
Schrddinger equation with the G-K potential (1.2)

d? Al
(—d7 + B'r* + == ev) U(r), =0, 2.1)
in which A’ = 242 B/ = 2B o = BuI ‘and v = 0,1,2,3.. . is the vibrational

quantum number. Equation (2.1) has an exact analytical solution. In particular, the
energy spectrum of the Schrodinger equation is given by Hall and Saad [24]

E,=28Qu+y), 2.2)
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in which
B=~VB, y=1+JA +1/4. 2.3)

The normalized solution of Eq. (2.1) takes the form [24]:

287 (), 112 )
W), = (—1)Y |:f'r—((yy))] ry_% exp (—%) F (—U, Y, ﬂrz) , 2.4)

where F (a, b, x) stands for confluent hypergeometric (Kummer) function defined by

the Gamma function
o0

. I'(a + n)T(b)x"
F(a,b, x) —;m (25)

In wave function (2.4) (y),, is the Pochhammer symbol defined by

Iy +v)

= —. 2.6
)y () (2.6)

The relation between the confluent hypergeometric function and the associated
Laguerre polynomials can by written as

m _F(n+m+1) _
L) (x) = P ESTE D F(—n,m+1,x), 2.7

in which LI (x) denotes the associated Laguerre polynomial:

R < DRI (R /o)) S
L (x)_g( D om0 28)

Therefore, after changing the variable x = ﬂrz, we can write the wave function (2.4)
in the form

Wiy = Cox 778 exp (—%) L), 2.9)
in which i
Co= (1) [—W(V)U} i) L) 2.10)
v vID(y) FTw+y) '

The differential ladder operators can be constructed directly from the wave function
(2.9). We look for the operators of the following representation:

Ky = A+(x)% +Bi(x)and K_ = A_(x)% + B_(x). 2.11)

These operators satisfy the following properties:

KiW(x)y = KYW(x)y41 and KW (x)y = KVW(X)y_1. (2.12)
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Then the raising and lowering operators can be constructed by taking advantage of the
first derivatives of the associated Laguerre polynomials [34]

x%Lz(x) =nLi(x) — (n+ o)L _|(x), (2.13)
x%Lg(x) =+ DL () — (+a+ 1 —x)L%x). (2.14)

Employing Eq. (2.13) and the result of the action of the differential operator %on the
wave function (2.9) we get

d y— 4 1
—W(x)y = ( Z)nwx)u — ~W(x),
dx 2
1,1 x\ d B
+ Cox? 0P exp (_E) L L(x). (2.15)

After simple calculation, we finally obtain the following result:

d y—%
—y =
T Y .

+Co®(x) [%Lz”(x) - %HLZ_M)] . @16

1
Y@y — 5 W)y

1 (y _ 1)
where ®(x) = x2\" 2/ exp (—%)
Hence, the lowering operator takes the following form:

Ko=—|x L] S 2.17)
T e 2\ T 2) T '

whereas its coefficient is given by

Gy

K'=@w+y-1 )
v Cufl

(2.18)

The form of Eq. (2.17) clearly indicates that the lowering operator annihilates the
vibrational ground state: .
K_W¥(x)o=0. (2.19)

In a similar manner, we construct the raising operator. Using Eq. (2.14) and the
result of the action of the differential operator % on the wave function (2.9) we get

d y—3
~ -
dx v 2x

\If(x)u—%ly(x)u+cux%(y_%) exp (—3) %Lg*‘ (). (2.20)
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A simple calculation provides the following result:

1
d Y—3 1 v+l 1 vty —X 1
g;wun,=45;&wwu—5wuhﬁim©u>ff;fq;4@»~——;——L5 uﬂ.
(2.21)
Hence, we obtain the following form of the raising operator:
K ¢ _1 ) DL (2.22)
=x——= —=)—=zx+v , .
T 2\" T 2) 2 v
which coefficient is given by
C
Ki=w+ncv. (2.23)
v+1

3 Ladder operators for the rotating G-K oscillator

The starting point for the derivation of the ladder operators for the rotating G-K
oscillator is the rotational-vibrational Schrodinger equation with the rotating G-K
potential [24]:

1d*> 1 A+JUJ+1D
[—§m+§|:3/r2+r—2j|—8ujl‘I’(V)UJZO, (3.1)

in which g,5 = 2'"71# and J=0, 1, 2... is the rotational quantum number.
The analytical solution of Eq. (3.1) has the following form [24]:

vigy 2 2
Y(r)ys = (=Y [%} P02 exp (—'B%) F (—U, S, ﬁrz) , (3.2)

in which
/ 21172
8=1+P-HJ+UD] . (3.3)

Using the relation between the hypergeometric confluent function and associated
Laguerre polynomial (2.8) we can rewrite the wave function (3.2) in the represen-
tation of a new variable x = Br?:

1

W = Mo 0 exp (-3) L e, (3.4)
in which 1
= 1 [2EORT i) vl DL
Nyj = (=1 |: OIT @) :| B T (3.5)
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The ladder operators for the rotating G—K oscillator can be constructed directly from
the wave function (3.4). To this aim, we are looking for the operators:

A d A d
Ly =Ci(x)— +Dy(x)and L_ = C_(x)— + B_(x). 3.6)
dx dx
which satisfy the following relationships:
Ly W)y = LY W@)psryand LoW(x)yy = LY W(x)yory. (B)

Using Eq. (2.13) and the result of the action of the differential operator % on the wave
function (3.4) one gets

3 ! 1(o-4) 2y d s
W) = 39 00r + Nosx? U exp (<) L0 ).
(3.8)
After simple calculation, the lowering operator and its coefficient can be specified in
the forms:

d W(x)
J— X —
dx v/ 2x

~ d 1 1 1 N
L_:_[x___(a—-)+—x—u] LY = (v +5- 22 39)
2 NU*],J

Additionally, one can show that this operator annihilates the vibrational ground state,
which depends on the rotational quantum number:

L_W(x)os = 0. (3.10)

In a similar manner one can construct the corresponding raising operator. Using
Eq. (2.14) and the result of the action of the differential operator % on the wave
function (3.4) one gets

1

s—1 —
di\wx)u = G () L) N () [“—“L;‘;ﬁ <x)—”+57xLi*‘(x>],
X 2x 2 X X
3.11)
in which
1(5-1) x
d(x); =x exp (—5) . (.12)

In view of the above, the raising operator and its coefficient can be given in the forms:

L O (P N R IIY T 2 LA I ALY A P
= X— — — —_ - — =X v ) = (v . .
+ dx 2 2 2 + Nyt1,7
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4 Coherent states of the G-K oscillator

In this section we turn our attention towards the coherent states of the G-K potential.
Crucial for the realization of this aim is an assumption that the Hamiltonian can be
factorized as R

Hy = ATA + Ej, 4.1

in which

L
V2

1

At = -
V2

d . 1[4 C a1 dWo()
[—d—r+Wo(r)i|, A= |:d—r+Wo(r)}, [A,AT]_— =
4.2)

Here W () is interpreted as a Witten superpotential [35,36], which satisfies the well-
know Riccati differential equation:

2

- [Woz(r) —~ M} + V(r) = Eo. 4.3)
2m dr

which is widely used in sypersymmetric quantum mechanics (SUSY QM) and per-
mits a construction of the Schrodinger equation which has analytical solutions [37].
The explicit expression for the superpotential can be determined using the Darboux
transformation. Hence, employing this approach, Wy (r) can be specified by a general

formula: d
Wo(r) = —ar InW(r)os, 4.4)
r

in which W(r)q, denotes the vibrational ground state of the quantum system. Taking
into account the wave function (3.2) in the arbitrary normalization one obtains [37]

L1
2 4 Br. (4.5)

Wo(r) =

Equations (4.2) and (4.5) generate the annihilation and creation operators for the G-K
potential:

. 1 d —8s+1 R 1 {d -s+13
Afz_[——Jr 2+/3r] A=—[—+ 2+ﬂr]- (4.6)
dr r r

/2

Additionally, it can be shown that the operator A annihilates the ground state. There-
fore, the coherent state |«J) of the rotating G—K oscillator is the eigenstate of the
annihilation operator:

' 2
AIO{J) =ala), |aJ) =2 exp (—%—{-\/Ear). “4.7)
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The method proposed also permits a derivation of the coherent states for the G-K
oscillator with zero total angular momentum. Applying this procedure, after similar
calculations, the normalized coherent states can be given in the form:

2
la) = Nar”*% exp (—'6% + «/Ear) 4.8)

It is interesting to note that the isospectral partner potential Vp (r) (Darboux poten-
tial) associated with the three-dimensional rotating G—K potential satisfies the follow-

ing equation:
d2
Vp(r) =V (r) — Z—dr2 W(r)oys. 4.9)

Using Eq. (4.5) one gets the Darboux potential:

§— 1
Vp (r) = V(r)+2( r22 —i—ﬁ). (4.10)

The ground state solution associated with the standard Darboux potential can be gen-
erated from the following relationship [14]:

Y (r)os = exp [—/ Wo(r)dr] . 4.11)

Hence, the ground state wave function can be specified by a general formula:

5—1/2 pr’
Y(r)os =r* 1 exp (— > ) (4.12)
5 Minimum uncertainty coherent states

It is easy to demonstrate that the coherent states |«J) minimize the generalized
position-momentum uncertainty relation (7 = 1) [14]:

(AvOP ()= § (wd [80) P [y, pl=igr) =20 =~ [4, 4],

5.1

in which y(7) denotes an anharmonic coordinate, whose explicit form depends on the

oscillator type, whereas p = —i % is the associated momentum operator. Adopting
Eq. (5.1) to the rotating G-K potential we obtain

~5+1

y(r) = + Br. (5.2)
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Taking into account Egs. (5.1) and (5.2) one gets

1
g =—5%+B. (5.3)

In the next step we can calculate the matrix elements:

(@l y(r) lad) = %(aJIA—f—ATIaJ) = %(wra*), (5.4)
(@) plat) = —i%(aﬂfi—/ﬁ looJ) :—i%(a—a*), (5.5)
2(ad |y () lad) = (@] AA + 24T A+ ATAT —g(r) lad) = (« — a*)* = ()| () lad),
(5.6)
—2(aJ| PP lad) = (@l AA =2 ATA+ATAT 4 g(r) lad) = (a — o) + (@] g(r) laJ),
(5.7)

applying the following operator relation:
AAT=ATA—g(r). (5.8)

Taking into account Eqs. (5.4)—(5.7) one may evaluate

1
Ay = (@] y(r) ) — (@] y(r) le) = —5 (/g lat), (53.9)

1
(Ap)* = (aJ| p* lad) — (aJ| pla) =5 (@18 lad), (5.10)

providing that Ay(r) = Ap and

s—1
2
r2 +p

2
on> . (5.11)

1 1
[Ay()]* (Ap)* = I (@] g(r) lad)?* = 7 <ocJ

The simple calculations performed reveal that the obtained coherent states minimize
the generalized position-momentum uncertainty relation for the G-K anharmonic
coordinate y(r) and that they are the eigenstates of the operator A, which annihilates
the vibrational ground state A 0J) = 0. Therefore, they satisfy the two fundamental
requirements established for the coherent states of an anharmonic oscillator. Some
similar minimum-uncertainty coherent states have been recently derived algebraically
by Molski [38] and Mikulski et al. [39].
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The integral on the right-hand side of the relation (5.11) can be calculated using
the well-known formula:

o0
/r"e*f”dr =nlp” "D Re(u) >0 (5.12)
0

and the integral representation of the Laguerre function. The starting point for the
realization of this aim is the calculation of the normalization constant of |« J) (4.7):

s—1 ﬂrz
jaf) =r""2exp (= + V2ar) . (5.13)

After simple calculations we obtain the normalization constant in the following form:

-5 )1/2 2 [‘“*,f‘”z + 1] L [—5, L ("”5%*)2]

Noy — —1/2:(
J = {aJ|aJ) 27 2sin(8m) T (5 —6)

[\S][98)

*\2
72 (a4 a*)? L [—8, %, (O‘JE% ) ]

2Bsin (§7) T (3 - §)

)2 *\2
Virtarat | ©5E o5t |L[-a+ b4 e (o4 )

+ 2B (26 — 1) cos (57) T (2 — §)

1/2

*\2
Varta+ @)L=+ 4,3, ] (<s + b)
2832 (25 — 1) cos Gm) T (2 — 8)

, (5.14)

in which L (a, b, x) denotes the Laguerre function. In this way we obtain the following
result:

S — 1 N2 287%9 (—a — a*)—25+3
ol z + al )= at
< A > V7B
2—5+1n2 (—o — a*)25—2 IB—5+1L |:—8 + %’ %7 (QZZ*)2i|

X
cos(6m)I" (2 —6)
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1621
*\2
2—8+l/27.[2 (—Ot _ 0[*)2873 ﬂ3/2—8L |:—(S, %’ (a—;:); ) i|
- sin(m)C (3 —68) (=8 + 1)
*\2
270122 (Lo — )21 b2 [‘5’ 3l ]
+ +B8, (515
sin(67) (3 —8) (=8 + 1) S
in which |
Q=8-7. (5.16)

Basing on the result (5.11) we can finally write

Ay(r)Ap
N§]287%Q (—Ol _ a*)—28+3
B 2/npB
_ 2, +a¥)?
—8+1,2 (—a —0[*)28 2[3 S+1p, |:—5+ %’ %’ (« 2(; )
X

cos(6m)I" (2 —6)

120 T 2B

278+1/2ﬂ2 (—ot _ a*)28—3 133/275L I:_S 1 (Ot+0(*)2]

sin(67)I (3 —8) (=8 + 1)

28
4

2—8+1/2,2 (—a — a*)ZS—l ‘375+1/2L |:_5 % (oz+a*)2:|
+
sin(67)I (3 —8) (=6 + 1)

B.  (5.17)

| =

It should be also pointed out that the states |«r) minimize the generalized position-
momentum uncertainty relation (5.1) yielding

_1 2
[Ay(r)]? (Ap)2=l<a ro2 +ﬁ‘a> : (5.18)
4 r
where '
y(r) = _yr+ 248 (5.19)

In Eq. (5.18) y(r) is the G-K coordinate, whereas (”;# — B =g).

Proceeding along the lines of the previous calculation one may solve the integral
on the right-hand side of the relation (5.18) yielding
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Ngzyfg (V _ %) (—a — a*)—2y+3

2B

Ay(r)Ap =

X
cos(ym)l' (2 —y)

2—v+1/2,2 (—a — a*)25—3 133/27;/14 |:—)/, %’ (QZZ*)Z}
: 3
sin(ym)l’ (5 — y) (=y+1

2V 202 (g — g*)2r Tl gy L2 [—% 3 (““m*)z}

28

1
+ . + 5B, (5.20)
sin(ym)T" (% —y)(=y+1) 2
in which
Ny = (afe)”'/?
12 12
AT ki st Uit &
IRV 2sin(ym) T (3 —y)
72 (a+a*)’L [—% % _(aJE%*)z]
2Bsin (ym)T (% -y)
Vain(a +ay | Y oy q| L[y 4 b L e ] () g
B Y Y T3.2- 728 Y3
+

2B 2y —Dcos(ym)T (2—y)
Varteta Loy 4.3 S5 oy +4)
B 28322y —cos(ym)T 2 —y)

1/2

(5.21)

In the next study we will derive the dynamical symmetry group to show that these
ladder operators satisfy SU(1,1) Lie group. Moreover, in the next paper we will show
relevant applications of the ladder operators and coherent states derived in quantum
chemistry computations. In particular, we will analytically compute the matrix ele-
ments for the vibrational and rotational—vibrational transitions in several diatomic
molecules.

6 Conclusions

In this work the ladder operators for the G—K potential have been constructed by a
simple algebraic procedure that had been applied by Dong et al. [18] to the Morse
potential. These operators have been obtained directly from the analytical eigenfunc-
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tion of the Schrodinger equation for the G—K oscillator. Also in this study the coherent
states of the G—K potential and the associated Darboux potential have been constructed
using the SUSY quantum mechanics method. It has been proved that these states mini-
mize the generalized position-momentum uncertainty relation. We hope that the ladder
operators constructed will be applied by other researchers to compute transition matrix
elements in theoretical spectroscopy of diatomic molecules.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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